Noise exposure enhances auditory cortex responses related to hyperacusis behavior.
نویسندگان
چکیده
Hyperacusis, a marked intolerance to normal environmental sound, is a common symptom in patients with tinnitus, Williams syndrome, autism, and other neurologic diseases. It has been suggested that an imbalance of excitation and inhibition in the central auditory system (CAS) may play an important role in hyperacusis. Recent studies found that noise exposure, one of the most common causes of hearing loss and tinnitus, can increase the auditory cortex (AC) response, presumably by increasing the gain of the AC. However, it is not clear whether the increased cortical response will affect sound sensitivity and induce hyperacusis. In this experiment, we studied the effects of noise exposure (narrow band noise, 12 kHz, 120 dB SPL, 1 hour) on the physiological response of the inferior colliculus (IC) and the AC, and the behavioral sound reaction in conscious Sprague Dawley rats. Noise exposure induced a decrease of sound evoked potential in the IC. However, significant increases of AC response including sound evoked potentials and the spike firing rates of AC neurons were recorded right after the noise exposure. These results suggest that noise exposure induces hyperexcitability of AC presumably by increasing the post-synaptic response of AC neurons. The behavioral consequence of the noise exposure on sound perception was measured by the amplitude of the acoustic startle response before and after noise exposure in a separate group of rats. Although noise exposure caused a moderate hearing loss, the acoustic startle amplitude at the super-threshold level was significantly increased. These results suggest that noise exposure can cause exaggerated the sound reaction which may be related with the enhanced responsiveness of the AC neurons. This phenomenon may be related with noise induced hyperacusis.This article is part of a Special Issue entitled: Tinnitus Neuroscience.
منابع مشابه
Prolonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle Reflex
Hearing loss changes the auditory brain, sometimes maladaptively. When deprived of cochlear input, central auditory neurons become more active spontaneously and begin to respond more strongly and synchronously to better preserved sound frequencies. This spontaneous and sound-evoked central hyperactivity has been postulated to trigger tinnitus and hyperacusis, respectively. Localized hyperactivi...
متن کاملIs noise-induced cochlear neuropathy key to the generation of hyperacusis or tinnitus?
Perceptual abnormalities such as hyperacusis and tinnitus often occur after acoustic overexposure. Although such exposure can also result in permanent threshold elevation, some individuals with noise-induced hyperacusis or tinnitus show clinically normal thresholds. Recent work in animals has shown that a "neuropathic" noise exposure can cause immediate, permanent degeneration of the cochlear n...
متن کاملAcoustic Trauma Changes the Parvalbumin-Positive Neurons in Rat Auditory Cortex
Acoustic trauma is being reported to damage the auditory periphery and central system, and the compromised cortical inhibition is involved in auditory disorders, such as hyperacusis and tinnitus. Parvalbumin-containing neurons (PV neurons), a subset of GABAergic neurons, greatly shape and synchronize neural network activities. However, the change of PV neurons following acoustic trauma remains ...
متن کاملThe Effect of Celecoxib, a Cyclooxygenase-2 Inhibitor on Noise- Induced Hearing Loss
Objective(s): Noise-induced hearing loss (NIHL) is the major cause of acquired hearing loss. Celecoxib, a cyclooxygenase-2 (COX-2) inhibitor, is a non- steroidal anti- inflammatory drug (NSAID) with known antioxidant and antineoplastic activity. Therefore, we monitored the extent of temporary noise- induced threshold shifts (TTS) and cochlear damage caused by high level 4- kHz noise exposure t...
متن کاملTinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network
Hearing loss often triggers an inescapable buzz (tinnitus) and causes everyday sounds to become intolerably loud (hyperacusis), but exactly where and how this occurs in the brain is unknown. To identify the neural substrate for these debilitating disorders, we induced both tinnitus and hyperacusis with an ototoxic drug (salicylate) and used behavioral, electrophysiological, and functional magne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Brain research
دوره 1485 شماره
صفحات -
تاریخ انتشار 2012